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Abstract:  This paper studies the control and synchronization of hyperchaotic memoristive circuits with unknown parameters 

using adaptive control approach. The designed adaptive nonlinear controllers globally control and synchronize two 

identical hyperchaotic memoristive systems evolving from different initial conditions. The adaptive approach is 

suitable for addressing uncertainties in systems parameters and environmental disturbances that can badly affect 

control and synchronization performance. The effectiveness and feasibility of the designed nonlinear controllers is 

verified and demonstrated numerically. 
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Introduction  

The year 1990 marks a major turning point in the study of 

nonlinear dynamical systems when the idea of 

synchronization of chaotic systems was presented by Pecora 

and Carroll (Pecora and Carroll, 1990). Since then, the 

phenomenon and its application in secure communication has 

attracted intensive research attention (Cuomo et al., 1993; 

Ying and Chua, 1997; Sundar and Minai, 2000; Boutayeb et 

al., 2002; Guan et al., 2002;  Feki and Ma et al., 2003; Pan et 

al., 2010;  and Zhang et al., 2010).  Chaos synchronization 

had formed interdisciplinary applications in varieties of field 

of study including time series analysis, modelling cardiac 

rhythm and brain activity, and earth quake dynamics (Yang 

and Duan, 1998; Pikovsky et al., 2001; Eisencraft et al., 2012; 

Ren et al., 2013; Aguilar-Lopez et al., 2014; Filali et al., 

2014), these have provided the driving force for the enormous 

effort being devoted to different ways of achieving chaos 

synchronization in different systems. 

Generally, two interacting chaotic systems with state space 

variables )(1 tx  and )(1 ty   becomes completely or 

identically synchronized if the synchronization manifold  

)()( 11 tytx   exists and the condition 

0)()(lim 11 


tytx
t

0t  is satisfied (Pecora and 

Carroll, 1990). Other types of synchronization that have been 

widely studied and reported in literature include generalized 

synchronization (Yang and Duan, 1998; and Wang and Guan, 

2006), phase synchronization (Michael et al., 1996; Ho et al., 

2002; Di et al., 2005), lag synchronization (Di et al., 2005), 

projective synchronization (Mainieri and Rehacek, 1999), 

anti-synchronization (Zhang and Sun, 2004) etc. Also, a wide 

variety of methods for synchronization and control of 

chaotic/hyperchaotic systems have also been proposed in 

recent years, such as linear state feedback control method 

(Olusola et al., 2009), adaptive control method 

(XingyuanWang and YaqinWang, 2011), impulsive control 

method (Ying and Chua, 1997), Observer-based method (Liu 

et al., 2009) global synchronization method (Zhang et al., 

2010) and so on.  

In recent years, hyperchaotic systems have attracted huge 

body of knowledge in nonlinear science. Hyperchaotic system 

is characterized with more than one positive Lyapunov 

exponent which generates more complex dynamics than the 

low dimensional chaotic systems.  For instance, it has been 

shown that hyperchaotic systems are more effective for secure 

communication and the presence of more than one positive 

Lyapunov exponent clearly improves the security of the 

communication scheme (Elabbasy et al., 2006). In the present 

paper, we examine control and synchronization of memristor-

based hyperchaotic systems via extended adaptive control 

approach. This approach is significant and of vital importance 

because it can be used to estimate the unknown parameters of 

coupled system. In real life, all the parameters of a system are 

not known precisely ahead of experiments. The feasibility of 

the designed controllers is verified and demonstrated 

numerically and it was found that the coupled system is 

controlled to equilibrium point when the controllers are 

activated at time t > 0. 

Model description 

The 4-dimensional memristor-based hyperchaotic system can 

be described in the dimensionless form by the following set of 

differential equations (Bao et al., 2006): 

𝑥̇ = 𝛾𝑎(𝑦 – 𝑥 +  𝑑𝑥 − 𝑊(𝑤)𝑥 ) 

𝑦̇ = 𝛾(𝑥 − 𝑦 + 𝑧)  (1) 

𝑧̇ =  −𝛾(𝑏𝑦 +  𝑐𝑧) 

𝑤̇ = 𝛾𝑥  

Where𝑊(𝑤) is the memductance of the memristor and is 

chosen as: 

𝑊(𝑤) =  𝛼 + 3𝛽𝑤2  (2) 

Equation (1) governs the 4-dimensional memristor oscillator 

circuit that has been shown to exhibit rich varieties of 

dynamical behavior including chaotic motion when the 

control parameters are respectively chosen as 𝑎 = 9.8, 𝑏 =
100

7
, 𝑐 = 0, 𝑑 =

9

7
, 𝛼 =

1

7
 , 𝛽 =

2

7
 , 𝑎𝑛𝑑 𝛾 = 20.We displayed 

in Figs. 1 & 2 the phase portrait and the corresponding time 

series of the chaotic attractor. 
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(a) 

 

 
(b) 

Fig 1: Chaotic attractor of a 4-Dimensional smooth memristor oscillator with the following parameter settings: 𝑎 = 9.8, 𝑏 =
100

7
, 𝑐 = 0, 𝑑 =

9

7
, 𝛼 =

1

7
 , 𝛽 =

2

7
 , 𝑎𝑛𝑑 𝛾 = 20..  (a) y–x–w (b) y–w. 

 

 
Fig. 2: Time series for hyperchaotic memristive circuit described by Eq. 1 with parameters fixed as in Fig. 1 

 

 

Design of extended adaptive controllers for controlling 

chaos in hyperchaotic memristor oscillator 

In order to design extended adaptive controllers for the control 

of hyperchaotic memristor oscillator system, equation (1) is 

reproduced as follows: 

𝑥̇ = 𝛾𝑎(𝑦 – 𝑥 +  𝑑𝑥 − 𝑊(𝑤)𝑥 ) + 𝑢1(𝑡) 

𝑦̇ = 𝛾(𝑥 − 𝑦 + 𝑧) + 𝑢2(𝑡)  (3) 

𝑧̇ =  −𝛾(𝑏𝑦 +  𝑐𝑧) + 𝑢3(𝑡) 

𝑤̇ = 𝛾𝑥 + 𝑢4(𝑡)  

Where𝑢𝑖(𝑡), 𝑖 =  1, 2, 3, 4, are the nonlinear controllers to be 

determined later such that the state variables x, y, z, w can be 

taken to their desired values 𝑥𝑥 , 𝑦𝑑 , 𝑧𝑑 , 𝑤𝑑, respectively. 

According to the Lyapunov Stability Theory, we choose the 

following Lyapunov function: 










~

2
~
2

~
2

~
22222

2

1
dcbawzyxV

 (4) 

where



 aaa
~

, 



 bbb
~

, 



 ccc
~

 and 



 ddd
~

. And 



a , 



b , 



c , 



d  are, the estimated values 

of these unknown parameters respectively. 

By differentiating system (4) with respect to time, t, we obtain 

the following; 

𝑉̇ =  𝑥𝑥̇ + 𝑦𝑦̇ + 𝑧𝑧̇ + 𝑤𝑤̇ +  𝑎̃𝑎̇̃ + 𝑏̃𝑏̇̃ + 𝑐̃𝑐̇̃ +  𝑑̃𝑑̇̃
 (5) 

By substituting equation (3) into equation (5) and letting



a , 



b , 



c , 



d  take the place of 𝑎, 𝑏, 𝑐, 𝑑  we obtain the following 

𝑉̇ =  𝑥[𝛾𝑎̅(𝑦 – 𝑥 + 𝑑̅𝑥 − 𝑊(𝑤)𝑥 ) + 𝑢1] + 𝑦[𝛾(𝑥 − 𝑦 + 𝑧)

+ 𝑢2] + 𝑧[−𝛾(𝑏̅𝑦 + 𝑐̅𝑧) + 𝑢3] + 𝑤[𝛾𝑥

+ 𝑢4] + 𝑎̃(−𝑎̇̃ ) + 𝑐̃(−𝑐̇̃) +  𝑏̃(−𝑏̃)̇
̇

+  𝑐̃(−𝑐̇̃) 

𝑉̇ = 𝑥[𝛾𝑎̅(𝑦 – 𝑥 +  𝑑̅𝑥 − 𝑊(𝑤)𝑥 ) + 𝑢1] + 𝑦[𝛾(𝑥 − 𝑦 +

𝑧) +  𝑢2] + 𝑧[−𝛾(𝑏̅𝑦 + 𝑐̅𝑧) + 𝑢3] + 𝑤[𝛾𝑥 + 𝑢4] +

 𝛼̃(−𝑎̇̃ + 𝛾𝑥(𝑦 – 𝑥 +  𝑑̅𝑥 − 𝑊(𝑤)𝑥 )) +

 𝑑̃(−𝑑̇̅ + 𝛾𝑥2) +  𝑏̃(−
̇

𝑏̇̅ − 𝛾𝑦𝑧) + 𝑐̃(−𝑐̅̇ − 𝛾𝑧2) (6) 

In order to ensure that the controlled system (3) converges to 

the equilibrium point 𝐸0 = (0,0,0,0) asymptotically, the 

following controllers are chosen: 

𝑢1 = −𝛾𝑎̅(𝑦 – 𝑥 +  𝑐̅𝑥 − 𝑊(𝑤)𝑥 ) − 𝑥 

𝑢2 = −𝛾(𝑥 − 𝑦 + 𝑧) − 𝑦  (7) 

𝑢𝟑 =  𝛾(𝑏̅𝑦 +  𝑐̅𝑧) − 𝑧 

𝑢𝟒 =  −𝛾𝑥 − 𝑤 

And the following parameter estimation update laws are 

chosen: 

𝑎̇̅ = 𝛾𝑥(𝑦 – 𝑥 +  𝑐̅𝑥 − 𝑊(𝑤)𝑥 ) +  𝑎̃ 

𝑐̅̇ = 𝛾𝑥2 + 𝑐̃   (8) 

𝑏̇̅ = −𝛾𝑦𝑧 +  𝑏̃ 

𝑑̇̅ = 𝛾𝑧2 + 𝑑̃ 
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Substituting equation (7) and (8) into equation (6) one readily 

obtains: 

𝑉̇ =  −𝑥2 − 𝑦2 − 𝑧2 − 𝑤2 − 𝑎̃2  −  𝑐̃2 − 𝑏̃2 − 𝑑̃2 < 0(9) 

According to the Lyapunov stability theory, the condition 

defined by equation (9) ensures that the controlled system (3) 

converges to the equilibrium point with the controllers in 

equation (7) and the parameter estimation update law 

described by system (8). 

 

 

 

Numerical simulations 

To verify the effectiveness and feasibility of the controllers 

obtained in equations (8) and (9), fourth-order Runge-Kutta 

algorithm is employed with initial conditions (0, 10−10, 0, 0), 

a time step of 0.001 and fixing the parameter values as in Fig. 

1 to ensure chaotic dynamics of the coupled systems. The 

result obtained showed that for time 𝑡 ≤ 50, the dynamics of 

the state variables move chaotically with time when the 

control functions defined in equation (7) is deactivated as 

shown in Fig. 3. 

 

 

 
Fig. 3: Time series of hyperchaotic memristor oscillator circuit without controller 

 

 

With the controllers activated at 𝑡 ≥ 50, the state variables were controlled to the origin as shown in Fig. 4. 
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(b) 

 
(c) 

 
(d) 

Figure 4: (a) – (d) Adaptive controller tracking control of hyperchaotic memristor oscillator when the controller is activated at t 

= 50.  

 

Design of extended adaptive controller for synchronization 

of chaos in hyperchaotic memristor oscillators 

In order to achieve synchronization between two 4-

dimensional memristor oscillator circuits evolving from 

different initial conditions, drive system and the response 

system are respectively given as: 

𝑥̇1 = 𝛾𝑎(𝑦1 – 𝑥1  +  𝑐𝑥1 − (𝛼 + 3𝛽𝑤1
2)𝑥1) 

𝑦̇1 = 𝛼(𝑥1 − 𝑦1 + 𝑧1)  (10) 

𝑧̇1 =  −𝛾(𝑏𝑦1  +  𝑐𝑧1) 
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𝑤̇1 = 𝛾𝑥1    

And; 

𝑥̇2 = 𝛾𝑎(𝑦2 – 𝑥2  +  𝑐𝑥2 − (𝛼 + 3𝛽𝑤2
2)𝑥2) + 𝑢1 

𝑦̇2 = 𝛼(𝑥2 − 𝑦2 + 𝑧2) +  𝑢2 (11) 

𝑧̇2 =  −𝛾(𝑏𝑦2  +  𝑐𝑧2) +  𝑢3 

𝑤̇2 = 𝛾𝑥2 + 𝑢4    

Where:𝑢𝑖(𝑡), 𝑖 =  1, 2, 3, 4, are the nonlinears controllers to 

be determined later. 

Let the error states between the state variables of the response 

and drive systems be defined as follows: 

𝑒𝑥 = 𝑥2 − 𝑥1 ;    𝑒𝑦 = 𝑦2 − 𝑦1 ;    𝑒𝑧 = 𝑧2 − 𝑧1 ;    𝑒𝑤 =

𝑤2 − 𝑤1  (12) 

Subtracting equation (10) from equation (11), the following 

error dynamical system is obtained: 

𝑒̇𝑥 = 𝛾𝑎(𝑒𝑦 − 𝑒𝑥 + 𝑐𝑒𝑥 − 𝛼𝑒𝑥 − 3𝛽[𝑤2
2𝑥2 − 𝑤1

2𝑥1])  + 𝑢1 

𝑒̇𝑦 = 𝛾(𝑒𝑥 − 𝑒𝑦 + 𝑒𝑧) + 𝑢2  (13) 

𝑒̇𝑧 = −𝛾(𝑏𝑒𝑦 + 𝑐𝑒𝑧) + 𝑢3 

𝑒̇𝑤 = 𝛾𝑒𝑥 + 𝑢4 

The following Lyapunov function is chosen: 

𝑉 =
1

2
(𝑒𝑥

2 + 𝑒𝑦
2 + 𝑒𝑧

2 + 𝑒𝑤
2 + 𝑎̃2 + 𝑐̃2 + 𝑏̃2 + 𝑑̃2)(14) 

Where:𝑎̃ =  𝑎 − 𝑎̅, 𝑏̃ =  𝑏 −  𝑏̅, 𝑐̃ =  𝑐 −  𝑐̅, 𝑑̃ =  𝑑 − 𝑑̅. 

The parameters 𝑎̅, 𝑏̅, 𝑐̅, 𝑎𝑛𝑑 𝑑̅ are the estimated values of 

these unknown parameters, respectively. 

 

 

By differentiating (13) with respect to time, the following is obtained 

𝑉̇ =  𝑒𝑥𝑒̇𝑥 + 𝑒𝑦𝑒̇𝑦 + 𝑒𝑧𝑒̇𝑧 + 𝑒𝑤𝑒̇𝑤 + 𝑎̃𝑎̇̃ + 𝑐̃𝑐̇̃ + 𝑏̃𝑏̇̃ + 𝑑̃𝑑̇̃   (15) 

By substituting equation (12) into equation (14) and letting  𝑎̅, 𝑏̅, 𝑐̅, 𝑎𝑛𝑑 𝑑̅ take the place of 𝑎, 𝑏, 𝑐 𝑎𝑛𝑑 𝑑 one readily obtains 

the following: 

𝑉̇ =  𝑒𝑥(𝛾𝑎̅(𝑒𝑦 − 𝑒𝑥 + 𝑐̅𝑒𝑥 − 𝛼𝑒𝑥 − 3𝛽[𝑤2
2𝑥2 − 𝑤1

2𝑥1]) + 𝑢1) + 𝑒𝑦(𝑐(𝑒𝑥 − 𝑒𝑦 + 𝑒𝑧) +  𝑢2) + 𝑒𝑧(−𝑐(𝑏̅𝑒𝑦 + 𝑑̅𝑒𝑧) + 𝑢3)

+ 𝑒𝑤(𝛾𝑒𝑥 + 𝑢4) +  𝑎̃(−𝑎̇̃) + 𝑐̃(−𝑐̇̃) + 𝑏̃(−𝑏̃)̇
̇

+  𝑐̃(−𝑐̇̃) 
 

𝑉̇ =  𝑒𝑥(𝛾𝑎̅(𝑒𝑦 − 𝑒𝑥 + 𝑐̅𝑒𝑥 − 𝛼𝑒𝑥 − 3𝛽[𝑤2
2𝑥2 − 𝑤1

2𝑥1]) + 𝑢1) + 𝑒𝑦(𝛾(𝑒𝑥 − 𝑒𝑦 + 𝑒𝑧) + 𝑢2) + 𝑒𝑧(−𝛾(𝑏̅𝑒𝑦 + 𝑐̅𝑒𝑧) + 𝑢3) +

𝑒𝑤(𝛾𝑒𝑥 + 𝑢4) + 𝑎̃(−𝑎̇̅  + 𝛾𝑒𝑥(𝑒𝑦 − 𝑒𝑥 + 𝑐̅𝑒𝑥 − 𝛼𝑒𝑥 − 3𝛽[𝑤2
2𝑥2 − 𝑤1

2𝑥1]) ) +  𝑐̃(−𝑐̅̇  +  𝛾𝑒𝑥
2) +  𝛽̃(−𝛽̇̅ + (−`𝛾𝑒𝑦𝑒𝑧))

̇
+

 𝑐̃(−𝑐̅̇ + (−𝛾𝑒𝑥
2))       (16) 

 

In order to ensure that the error dynamical system (13) 

converges to the origin asymptotically, the condition 𝑉̇ < 0 

must be satisfied. From equation (16) the following 

controllers are selected: 

𝑢1(𝑡) = −𝛾𝑎̅(𝑒𝑦 − 𝑒𝑥 + 𝑐̅𝑒𝑥 − 𝛼𝑒𝑥 − 3𝛽[𝑤2
2𝑥2 − 𝑤1

2𝑥1]) − 𝑒𝑥 

𝑢2(𝑡) = −𝛾(𝑒𝑥 − 𝑒𝑦 + 𝑒𝑧) − 𝑒𝑦 (17) 

𝑢3(𝑡) = 𝛾(𝑏̅𝑒𝑦 + 𝑐̅𝑒𝑧) − 𝑒𝑧 

𝑢4(𝑡) = −𝛾𝑒𝑥 − 𝑒𝑤 

And the parameter update laws are chosen as follows: 

𝑎̇̅ = 𝛾𝑒𝑥(𝑒𝑦 − 𝑒𝑥 + 𝑐̅𝑒𝑥 − 𝛼𝑒𝑥 − 3𝛽[𝑤2
2𝑥2 − 𝑤1

2𝑥1]) + 𝑎̃ 

𝑐̅̇ = 𝛾𝑒𝑥
2 + 𝑐̃   (18) 

𝑏̇̅ = −𝛾𝑒𝑦𝑒𝑧 + 𝑏̃ 

𝑑̇̅ = −𝛾𝑒𝑥
2 + 𝑑̃ 

Substituting equation (17) and (18) into equation (16) the 

following equation is obtained: 

𝑉̇ =  −𝑥2 − 𝑦2 − 𝑧2 − 𝑤2 − 𝑎̃2  −  𝑐̃2 − 𝑏̃2 − 𝑑̃2 < 0 
  (19) 

With condition (19) the error dynamical system converges to 

the origin asymptotically in line with the Lyapunov stability 

theory. Also the drive system (11) is synchronized with the 

response system (12) with controller (17) and the parameter 

update law (18). 

 

 

 

 

Numerical simulations 

By fixing the parameter values as in figure 1 to ensure chaotic 

dynamics of the state variables, systems (11) and (12) were 

solved with the control function as defined in equation (17). 

The result obtained shows that the error state variable moved 

hyperchaotically in time when the controller is switched off 

and when the controller is activated at t = 50 (see Figure 5), 

the error state variable converges to zero, thereby 

guaranteeing the asymptotic stability of the systems (11) and 

(12). This is defined by the synchronization quality e given as 

(Pecora and Carroll, 1990). 

𝑒 =  √𝑒𝑥
2 + 𝑒𝑦

2 + 𝑒𝑧
2 + 𝑒𝑤

2 

 

In Fig. 6, we display the convergence of response system to 

drive one after switching controllers on at time 𝑡 = 50.  
Again, this shows the effectiveness of the designed 

controllers. The initial values of the parameter update laws 

(18) are chosen as 5.0)0(1 a , 0.3)0(1 b , 0.2)0(1 c
 

and d1(0) = -5.0
. The parameter estimation values a , b , c  

and 



d  converges to 𝑎 = 9.8, 𝑏 =
100

7
, 𝑐 = 0, 𝑑 =

9

7
, 

respectively as shown in Fig. 7. 
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(a) 

 

(b) 

 

(c) 
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(d) 

 

 
(e) 

Figure 5: (a) – (e) Error dynamics between the two hyperchaotic memristor oscillator circuit with extended adaptive controllers 

deactivated for 0 <  𝑡 <  50 and activated for 𝑡 ≥ 50. 
 

 

(a) 

(b) 

 

(c) 

 

(d) 

Fig. 6: (a) – (e) Convergence of 4-dimensional response 

system to drive after switching controllers on at time 𝑡 = 50. 
 

Time Series of corresponding variables 
(𝑥1, 𝑥2), (𝑦1, 𝑦2), (𝑧1, 𝑧2) 𝑎𝑛𝑑 (𝑤1, 𝑤2) showan intermediate 

phase synchronization between the drive and response system 

before the attainment of complete synchronization. 

 

 
Fig. 7: Time response of parameter estimation errors 
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Conclusion 

In this work, the adaptive control techniques have been 

applied to control and synchronize hyperchaotic memoristive 

system with unknown parameters. The designed controllers 

were found to be very effective to control chaotic behaviour 

and globally synchronize two identical memoristive systems 

evolving from different initial conditions. Numerical 

simulations are given to demonstrate the effectiveness of the 

proposed controllers. Control and synchronization of 

memoristive system suggests the possibility for 

communication using chaotic wave forms as carriers, perhaps 

with application to secure communication. Thus, practical 

implementation of the proposed scheme shall be very useful 

and the future work shall focus on addressing this problem. 
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